基于有限元的骨组织工程支架结构力学性能优化分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51165044,31360229),全军医学科研“十二五”面上课题(CWS11J011), 西安交通大学机械制造系统工程国家重点实验室开放课题(Sklms2012001)


Optimization analysis on mechanical properties of scaffolds for bone tissue engineering based on finite element method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 分析骨组织工程支架微孔参数对支架力学性能的影响,为支架微孔结构的优化设计提供参考依据。方法 利用ANYSY软件建立支架微孔结构有限元模型,计算最大等效应力、最大总变形与孔隙率的关系,并分析比较不同孔径、孔间距结构对支架最大等效应力、最大总变形、内部应变的影响。结果 x、y轴方向孔间距的影响规律一致,随着孔间距从0.6 mm增加到2.0 mm,最大等效应力从63.1 MPa减小到46.3 MPa,最大总变形从23.8 μm减小到21.8 μm,最佳应变比从80%增大到84%;但随着z轴方向孔间距的增大,最大等效应力从38.3 MPa增大到47.8 MPa,最大总变形从20.8 μm增大到22.8 μm,最佳应变比在82%~85%波动。x,y轴方向孔径从0.1 mm增加到1.0 mm时,最大等效应力从32.4 MPa增大到78.4 MPa,最大总变形从19.9 μm增大到38.2 μm,最佳应变比从90%减小到53%;z轴方向孔径的增大会引起支架的最大等效应力从58.8 MPa减小到37.9 MPa,而最大总变形从23.3 μm增大到25.9 μm,最佳应变比从82%增大到87%。结论 支架孔隙率和最佳应变比越大,最大等效应力、最大总变形越小,支架生物性能和力学性能越好。研究结果对支架的结构设计和优化具有参考价值。

    Abstract:

    Objective To analyze the influence of microporous parameters on mechanical behavior of bone tissue engineered-scaffolds, and provide references for optimizing the microporous structure design. Methods The finite element models of scaffolds with microporous structures were established by using ANYSYS software. The relationships between porosity and maximum equivalent stress as well as maximum total deformation were calculated. The effects of microporous spacing and diameter on maximum equivalent stress, maximum total deformation and internal strain were compared and analyzed. Results The influence rule of microporous spacing in x and y direction was consistent. With the increase of microporous spacing from 0.6 mm to 2.0 mm, the maximum equivalent stress reduced from 63.1 MPa to 46.3 MPa, the maximum total deformation reduced from 23.8 μm to 21.8 μm, and the proportion of the best strain range increased from 80% to 84%. However, with the increase of microporous spacing in z direction, the maximum equivalent stress increased from 38.3 MPa to 47.8 MPa, the maximum total deformation increased from 20. 8 μm to 22.8 μm, and the proportion of the best strain range fluctuated within the range of 82%-85%. With the increase of microporous diameter in x and y direction from 0.1 mm to 1.0 mm, the maximum equivalent stress increased from 32.4 MPa to 78.4 MPa, the maximum total deformation increased from 19.9 μm to 38.2 μm, and the proportion of the best strain range reduced from 90% to 53%. With the increase of microporous diameter in z direction, the maximum equivalent stress reduced from 58.8 MPa to 37.9 MPa, the maximum total deformation increased from 23.3 μm to 25.9 μm, and the proportion of the best strain range increased from 82% to 87%. Conclusions The greater the porosity and the proportion of the best strain range, the smaller maximum equivalent stress and maximum total deformation would be, the scaffolds would have the better biological and mechanical properties. These results have reference values for design and optimization of scaffold structure.

    参考文献
    相似文献
    引证文献
引用本文

王娟,乌日开西?艾依提,赵梦雅,滕勇.基于有限元的骨组织工程支架结构力学性能优化分析[J].医用生物力学,2015,30(3):249-255

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-06-24
  • 最后修改日期:2014-10-21
  • 录用日期:
  • 在线发布日期: 2015-06-24
  • 出版日期:
关闭