主动脉夹层裂纹面内扩展的数值模拟
DOI:
作者:
作者单位:

1.天津大学;2.复旦大学附属中山医院

作者简介:

通讯作者:

中图分类号:

基金项目:


Numerical simulation of in-plane crack propagation in aortic dissection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 裂纹在主动脉中膜层内沿环向和轴向的扩展称作面内扩展,其本质为中膜相邻弹性层间的剥离。血管壁在剥离过程中发生界面损伤,形成夹层。裂纹在临床上也称作夹层的假腔。本文基于界面损伤提出一种裂纹面内扩展的数值模拟方法,并通过该方法探究裂纹面内扩展的规律。方法 基于双线性牵引分离定律表征中膜层的三种界面损伤模式,模拟剥离实验和剪切实验以标定其损伤参数。通过内聚力模型法将损伤界面引入理想化的双层圆管状主动脉模型中,模拟假腔在面内的扩展趋势。通过控制变量法改变初始假腔的环向角度、轴向长度和径向深度,建立多个计算模型,研究假腔几何参数对裂纹面内扩展方向、临界扩展压力以及界面损伤模式的影响。结果 仿真结果表明界面损伤在轴向扩展中以张开型(I型)为主,在环向扩展中以滑移型(II型)为主;随着初始假腔径向深度的增加,裂纹的扩展方向由环向转变为轴向,临界扩展压力降低(即更易扩展),且轴向损伤更趋近于纯张开型;随着初始假腔环向角度和轴向长度的增加,临界压力降低,环向损伤更趋近于纯滑移型。单一型损伤比混合型损伤具有更低的临界压力。结论 本研究表明通过内聚力模型法可有效模拟主动脉中膜弹性层之间的界面损伤行为,适用于夹层假腔面内扩展的数值模拟。数值模拟结果表明假腔的几何特征对裂纹的面内扩展有重要的影响。本文有助于理解夹层裂纹扩展的复杂病理生理过程。

    Abstract:

    Objective The circumferential and axial propagation of crack in the media layer of aorta is called in-plane propagation, which is essentially the delamination and separation of adjacent elastic lamellae within the media. The interface damage of the aortic wall occurs during the delamination, which resulted in aortic dissection. The crack is also known as false lumen (FL) of the dissection in clinic. Based on interface damage, a numerical simulation method for in-plane propagation of FL is proposed to explore the law of in-plane propagation of the initial cavity. Methods Three interface damage modes are characterized by bilinear traction separation law, and the damage parameters are calibrated by simulating peeling and shearing tests. The damage interface is introduced into the ideal double-layer cylindrical tube aortic model by means of cohesive zone model to simulate the in-plane propagation of FL. The control variable method is used to change the circumferential angle, axial length and radial depth of the initial cavity, and several calculation models are established to investigate the influence of cavity geometry parameters on the propagation direction, critical pressure and interface damage mode. Results It is shown that the interface damage is mainly opening mode (mode I) in axial propagation and sliding mode (Mode II) in circumferential propagation. With the increase of the radial depth of the initial cavity, the propagation direction of the FL changes from circumferential to axial, the critical pressure decreases (i.e. it is easier to propagate), and the axial damage tends to be pure opening mode. With the increase of the circumferential angle and axial length of the initial cavity, the critical pressure decreases and the circumferential damage tends to be pure sliding mode. The critical pressure of single damage is lower than that of mixed damage. Conclusion This study shows that the cohesive zone model can effectively characterize the interface damage behavior of elastic lamellae within the media, therefore, it is suitable for the numerical simulation of in-plane propagation of the FL. The numerical simulation results show that the geometry characteristics of the false lumen have an important effect on the in-plane propagation of the dissection. This paper is helpful to understand the complex pathophysiological process of dissection crack propagation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-28
  • 最后修改日期:2022-06-28
  • 录用日期:2022-06-29
  • 在线发布日期:
  • 出版日期:
关闭